Clinical Decision-Support Systems in Pediatrics

By Chris Longhurst, MD, MS, and Jin S. Hahn, MD, FAAP

Members, Steering Committee on Clinical Information Technology

Clinical decision-support systems (CDSS) are generally defined as any computer program designed to help health professionals make clinical decisions.1 Although we still do not have anything resembling Dr. McCoy’s famous tricorder on Star Trek, there has been an explosion of useful CDSS in recent years, and an increasing number are relevant to the care of children.

The concept of computerized decision-support in pediatrics is not new. As far back as 1961, Warner described a mathematical approach for the diagnosis of congenital heart disease.2 In this study, long before the advent of echocardiography, data were drawn from 1,035 patients referred for cardiac catheterization. Given multiple clinical findings, a matrix of 33 different congenital heart diseases and 50 associated clinical findings was used to calculate the probability of a specific diagnosis. The diagnostic accuracy of this system matched that of 3 pediatric cardiologists.

Although, historically, CDSS primarily were focused on diagnostic recommendations, pediatric decision-support can be provided by any computer system that deals with clinical data and medical knowledge to help deliver patient-specific advice.3 Laboratory systems that flag abnormal values, immunization registries that issue vaccination reminders, and automated pediatric electrocardiograph (EKG) interpretation are just a few examples of CDSS in common use today.

Clinical decision-support systems can be categorized by type (simple rule-based alerts vs more complex methods like neural networking and automated pediatric electrocardiograph interpretation) or access (handheld computer vs Web-based vs integrated computer system that deals with clinical data and medical knowledge to directly facilitate patient care by the clinicians, reduced the rates of erroneous drug orders, improved therapeutic dosage targets, and was associated with decreased costs per patient.6

The increasing use of computers in health care is being driven not only by the need to manage large amounts of information, but also by the desire to make evidence-based decisions, standardize care, and prevent medical errors. There is accumulating evidence to prove that clinical decision-support systems improve health care processes as well as patient outcomes.7 It may not be too long before handholds with wireless links to the EMR will become as useful as Dr. McCoy’s tricorder!

On the other end of the spectrum, ISABEL (http://www.isabel.org.uk/) is a diagnosis reminder system designed exclusively for use in pediatrics. It was developed with the help of the parents of an English girl who nearly died after doctors failed, at multiple visits, to diagnose necrotizing fasciitis, a rare but known complication of varicella. Results from an initial performance evaluation suggested that ISABEL showed more than 90% accuracy in producing the final diagnosis for a variety of real as well as hypothetical case scenarios.8 Although such tools can be very helpful in challenging cases, as well as useful for educational purposes, the need to enter patient-specific data generally prevents it from being useful for every patient.

Decision-Support in the Electronic Medical Record

From a process perspective, the problem with the previously described systems is that they require clinicians to actively seek out the tool and enter relevant patient data, a potentially time-consuming task in an already busy day. The future of clinical decision-support systems clearly lies in tight integration with the EMR, so that the very concept of a decision-support system fades away. When integrated with a robust EMR, decision-support can be tailored much more closely to individual patient needs, since it does not require duplicate data entry. Additionally, when combined with computerized physician order entry (CPOE), the decision can be affected at the time of entry. Ultimately, automated decision-support should take place in a transparent manner that is integral to the clinical workflow.

One example of such an effort was the development of a pediatric anti-infective decision-support system program that was integrated into the hospital information system in Utah. The authors concluded that use of the tool in a pediatric intensive care unit (PICU) was considered beneficial to patient care by the clinicians, reduced the rates of erroneous drug orders, improved therapeutic dosage targets, and was associated with decreased costs per patient.6

Chris Longhurst, MD, MS, is the physician lead for Clinical Informatics, and Jin Hahn, MD, FAAP, is the Chief Medical Information Officer and Division Chief for Pediatric Neurology at Lucile Packard Children’s Hospital. Neither author has financial relationships with the companies mentioned above.

References


Content Submission

Would you like to contribute to this newsletter? Articles should be approximately 500 to 1,000 words in length. Submit articles to David C. Stockwell, MD, newsletter editor, at dstockwe@cnmc.org.

Watch the Steering Committee on Clinical Information Technology (SCOCIT) Web site at www.scocit.org for information on submission deadlines for the Fall 2005 issue.